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The Dissipative Linear Boltzmann Equation for
Hard Spheres
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We prove the existence and uniqueness of an equilibrium state with unit mass
to the dissipative linear Boltzmann equation with hard-spheres collision kernel
describing inelastic interactions of a gas particles with a fixed background. The
equilibrium state is a universal Maxwellian distribution function with the same
velocity as field particles and with a non-zero temperature lower than the back-
ground one. Moreover thanks to the H -Theorem we prove strong convergence
of the solution to the Boltzmann equation towards the equilibrium.

KEY WORDS: Granular gases; equilibrium state; linear Fokker–Planck equa-
tion; trend to equilibrium.

1. INTRODUCTION

The present paper follows the very recent work(25) of Spiga and Toscani
on the linear dissipative Boltzmann equation and generalizes a part of
their results to the hard-spheres model.

In the last years, a significant interest has been devoted to the study
of kinetic models for granular flows. The largest part of this work has
its fundamentals on the non-linear models based upon generalizations of
the Boltzmann–Enskog equation. We refer the reader to the review arti-
cles.(9,16,17) Most of the studies are dealing with inelastic Maxwell parti-
cles, both for the driven case(4,7) or for the free case.(3) Such (pseudo-)
Maxwellian models enjoy nice mathematical simplifications and lead to
exact analytical results(12,13) (see also the recent developments on the in-
elastic Kac model.(23,24)) However only a few papers are dealing with the
inelastic hard-spheres models.(5,15)
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Despite their importance for practical applications, linear equations
for dissipative models have been much less addressed. To our knowl-
edge the only progresses on the matter are those of the afore-mentionned
paper(25) and of Pettersson2.(22) Such linear models arise due to suitable
asymptotics on inelastic mixture models (corresponding to two species of
different masses) describing typically the dynamics of fine polluting pow-
ders (particulate matter) interacting inelastically with a background gas
(air). Namely, we are concerned with the time evolution of the distribution
function f (x, v, t) of particles of masses m (representing the granular gas)
colliding inelastically with particles with masses m1 of a fixed background.
Throughout this paper, the subscript (1) will be addressed to the fixed
field particles whose distribution function is known and is assumed to be
a normalized Maxwellian M1 with given mass velocity and temperature.
Note that, the grains being cohesionless, long-range interactions of any
kind are irrelevant. Thus, the only model with real physical interest is the
hard-spheres model. As first introduced in,(20) the evolution of f (x, v, t) is
given by

∂f

∂t
(v, t)+ v ·∇xf (x, v, t)

= 1
2πλ

∫
R3×S2

|q ·n|
[

1
ε2
f (v�)M1(w�)−f (v)M1(w)

]
dw dn. (1.1)

Here λ denotes the constant mean free path, q is the relative veloc-
ity, q = v − w. The velocities (v�,w�) are the pre-collisional velocities of
the so-called inverse collision, which results in (v,w) as post-collisional
velocities. The most important feature of the collision mechanism is its
inelastic character which induces that (generally) it does not preserve the
total kinetic energy. The constant parameter 0< ε < 1 is called the resti-
tution coefficient and measures the inelasticity of the collisions. Whenever
ε = 1 we recover the usual linear Boltzmann equation (see Section 2 for
details).

The main feature of this paper is to prove the existence and unique-
ness of the (homogeneous) equilibrium state of the above Eq. (1.1). Pre-
cisely, we exhibit a (non-trivial) distribution function f (depending on the
velocity only) such that

Q(f )=0,

2Let us also mention the related paper by Martin and Piasecki(20) which has been brought to
our attention after the present one has been accepted for publication.
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where Q denotes the right-hand side operator of (1.1). When ε = 1, this
question is trivial since the conservation of momentum and energy implies

M̃1(v)M1(w)= M̃1(v�)M1(w�),

where M̃1 stands for the Maxwellian distribution with mass m and same
drift velocity and temperature as M1. Then, one sees immediately that the
integrand of Q vanishes for f = M̃1. Clearly, for 0<ε<1 this is no more
the case and it appears impossible to determine so easily the (eventual)
equilibrium state. Actually, the two following questions are far for being
trivial:

• Does an equilibrium state exist?

• If it does, is it given by some suitable Maxwellian distribution?

In this paper, we answer positively to both questions by exhibiting an
equilibrium state as a Maxwellian distribution with the same mass veloci-
ty as M1 and with a universal non-zero temperature lower than the given
background temperature. Moreover, this equilibrium state is unique, pro-
vided its mass is prescribed. Finally, this Maxwellian distribution coincide
with the one derived in the pseudo-Maxwellian case3.(25) Actually, it is
also possible to show that, as in the non-dissipative case, the equilibrium
state is universal in the sense that it does not depend on the collision ker-
nel. Let us mention here that our results answer to some open questions
from ref. 25 and complete the study of ref. 22 where the existence of an
equilibrium state was used as an assumption for some of the results.

The two previous questions, as well as the problem of the rate of
convergence towards equilibrium, have been recently addressed in the
afore-mentioned paper(25) for the pseudo-Maxwellian approximation. This
pseudo-Maxwellian approximation consists in replacing the relative veloc-
ity q appearing in the collision kernel |q ·n| of Q by the unit vector in the
direction of q. The pseudo-Maxwellian model enjoys in particular two fun-
damental properties. First, the associated moment equations are closed with
respect to the moments of the distribution function. Hence, it is possible
to derive the time evolution of the drift velocity u(t) and the temperature
T (t) of f (v, t) and to predict the mass velocity and temperature of the
eventual equilibrium state. Moreover, as pointed out by Bobylev,(2) Max-
well models lend themselves to convenient Fourier analysis. These two im-
portant properties enabled to determine the Maxwellian equilibrium state

3Let us point out that this Maxwellian distribution has been first derived in ref. 20.
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for the pseudo-Maxwellian model and to prove also exponential conver-
gence of the solution to (1.1) towards the equilibrium (in the homoge-
neous setting).

Unfortunately, these two tools do not apply for the hard-spheres
model (1.1) and we have to proceed in a different way. The main problem
is actually to predict what should be the eventual steady-state. To do so,
we derive formally a suitable linear Fokker–Planck equation associated to
the dissipative Boltzmann model (1.1) (Section 3). The link between the
two models is described through the asymptotics of the grazing collisions
(see e.g., [8, Chapter II.9]) There is now a good amount of results on
the matter for the elastic (non-linear) Boltzmann equation. We mention
here the papers(10,11,27,28) on the connection between the non-linear Boltz-
mann equation and the Landau–Fokker–Planck equation and we refer to
the works for linear problems. We emphasize the fact that our goal in this
paper is absolutely not to prove rigorously any kind of asymptotics proce-
dure. The results of Section 3 must only be viewed as a formal (but effi-
cient) way to exhibit a suitable approximation of the collision operator Q
(even if it is possible to make them rigorous, see appendix). We point out,
that, to our knowledge, it is the first time (in kinetic theory) that such a
limiting process is performed with this scope. The interest of this proce-
dure is that the equilibrium state of the approximated Fokker–Planck op-
erator is easy to obtain. It is actually a suitable Maxwellian distribution
which appears then as the candidate for the stationary solution to (1.1).
The main problem is then to prove that this Maxwellian is effectively a
steady state for Q. This will be done by means of a Fourier transform set-
ting.

Let us explain now the organization of the paper. In Section 2, we de-
scribe briefly the dissipative Boltzmann linear model and its properties. In
Section 3 we deal with the Fokker–Planck derivation of an approximation
of Q which shall help us to recognize the nature of the equilibrium state.
Then, in Section 4, we show that the Maxwellian obtained by the above
procedure is really a stationary solution to (1.1). In Section 5 we prove
thanks to the so-called H -Theorem that the equilibrium state is unique
(provided its mass is prescribed) and that the solution to (1.1) converges
(in the strong L1-sense) towards the equilibrium. Finally, we end this pa-
per by some open questions and perspectives.

2. THE DISSIPATIVE LINEAR BOLTZMANN EQUATION

As we told it in Introduction, we are concerned in this paper with
the evolution of the distribution function f (v, t) of granular gas particles
with masses m which undergo inelastic collisions with the field particles
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(of masses m1) of a fixed background. The background is supposed to be
at thermodynamical equilibrium with given temperature T1 and given mass
velocity u1, i.e., its distribution function is the following normalized Max-
wellian:

M1(v)=
(
m1

2πT1

)3/2

exp

{
−m1(v −u1)

2

2T1

}
v ∈R3.

The main feature of dissipative (inelastic) collisions is that part of the nor-
mal relative velocity is lost, that is

(v�−w�) ·n =−ε(v −w) ·n, (2.1)

where n ∈ S2 is the unit vector in the direction of impact, (v,w) stand
for the velocities before impact whereas (v�,w�) denote the post-collisional
velocities. The so-called (constant) restitution coefficient ε is such that
0<ε<1; the case ε = 1 corresponding to elastic collision mechanism.
Thanks to (2.1) and assuming the conservation of momentum

mv�+m1w�=mv +m1w

one finds the following collision mechanism{
v�= v −2α(1−β)[(v −w) ·n]n
w�=w +2(1−α)(1−β)[(v −w) ·n]n,

(2.2)

where α is the mass ratio and β denotes the inelasticity parameter:

α= m1

m+m1
, β= 1− ε

2
,

i.e., 0<α< 1 (where we exclude the peculiarities of the limiting cases of
Lorentz and Rayleigh gases) and 0 < β < 1/2. We refer to ref.15 for a
description of the geometry of the collisions. It is easy to see that system
(2.2) is invertible and provides the pre-collisional velocities of the so-called
inverse collisions, resulting in (v,w) as post-collisional velocities:

v�= v −2α
1−β

1−2β
[(v −w) ·n]n

w�=w +2(1−α) 1−β
1−2β

[(v −w) ·n]n.
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In contrast to the elastic case (ε=1), such a collision mechanism induces
dissipation of the kinetic energy:

m|v�|2 +m1|w�|2 − (m|v|2 +m1|w|2)=−4
mm1

m+m1
β(1−β)|q ·n|2�0.

In space homogeneous conditions, upon using λ as a time scale, Eq. (1.1)
can be re-written in the dimensionless form:

∂f

∂t
(v, t)= 1

2π

∫
R3×S2

|q ·n|
[

1
ε2
f (v�)M1(w�)−f (v)M1(w)

]
dw dn. (2.3)

The factor ε−2 in the gain term above appears respectively for the Jaco-
bian of the transformation dv�dw� into dvdw and from the length of the
cylinders |q� · n| = ε|q · n| (see(9) for details) Let us define the (dissipative)
linear Boltzmann collision operator (acting only on the velocity space)

Q(f )= 1
2π

∫
R3×S2

|q ·n|
[

1
ε2
f (v�)M1(w�)−f (v)M1(w)

]
dw dn. (2.4)

Note that, performing the change of variables n →−n leads to the equiv-
alent expression:

Q(f )= 1
π

∫
R3×S2

H(q ·n/|q|)q ·n
[

1
ε2
f (v�)M1(w�)−f (v)M1(w)

]
dw dn,

where H(·) is the Heavyside step function. We can also define the collision
operator by its action on the observables. Precisely, for any regular test-
function ψ(v)

〈ψ,Q(f )〉= 1
2π

∫
R3×R3×S2

|q ·n|f (v)M1(w)[ψ(v�)−ψ(v)]dvdwdn. (2.5)

Clearly, ψ(v)≡ 1 is a collision invariant (mass conservation) whereas, in
contrast to the elastic case, ψ(v)= v and ψ(v)= v2 are not (dispersion of
kinetic energy). Note that an important feature of the hard-spheres model
is that (even in the elastic case) the moments equations of Q(f ) are not
closed with respect to the ones of f .
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3. THE FOKKER–PLANCK APPROXIMATION

In this section, we perform a formal derivation of a suitable linear
Fokker–Planck equation obtained from (1.1) through a kind of grazing
collisions asymptotics. We point out that, our aim in this paper, is not to
prove rigorously the convergence of the (re-scaled) dissipative Boltzmann
operator Q towards the Fokker–Planck operator QFP (3.9) below as the
collisions become grazing. The limiting process we perform here must only
be seen as an efficient tool to predict the nature of the equilibrium state of Q
(if it exists). Nevertheless, the following approximation result can be made
rigorous and this shall be done in the appendix. In this section, we will
only stay at a formal level. Let us assume that all the collisions concen-
trate around

|q ·n|/|q|∼0. (3.1)

Consequently, according to (2.2) one has |v�− v|∼0 and, for any smooth
function ψ , one can perform a Taylor expansion of ψ(v�) around v lead-
ing, at the second order, to:

ψ(v�) = ψ(v)+∇vψ(v) · (v�− v)+ 1
2

D2ψ(v)(v�− v)⊗ (v�− v)+o(|v�− v|2)

= ψ(v)−2α(1−β)(q ·n)∇vψ(v) ·n + (2α(1−β)q ·n)2

2
D2ψ(v) ·n ⊗n

+o(|q ·n/|q||2) (3.2)

where D2ψ is the Hessian matrix of ψ . The o(|v�− v|2) term will be ne-
glected in the sequel. One clearly observes that the expansion (3.2) is sim-
ilar to that obtained in the study of elastic collisions between particles of
same masses.(19) We point out here that this property is strongly related
to the fact that the loss of the relative velocity due to inelasticity only
occurs in the direction parallel to the collision direction (a different sit-
uation would occur by taking into account dissipation of the tangential
relative velocity). Precisely, one notes that (3.1) implies also v′ ∼ v where
v′ is the post-collisional velocity in the elastic case. The only difference
is that, in the “classical” theory, the multiplicative constant 2α(1 − β) is
taken to be equal to 1/2. Thus, staying at a formal level, taking into ac-
count dissipative collisions between particles of unequal masses does not lead
to supplementary difficulties.
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Let us consider a referential frame with the x-axis directed along q.
Then,

n = (cos θ, sin θ cos ξ, sin θ sin ξ) 0�θ�π/2, 0�ξ�2π,

cos θ = |q ·n|
|q| and dn = sin θ dθdξ.

(3.3)

Assuming that that the collisions concentrate around θ ∼π/2, we define

bδ(θ)= 2
π
χ[π/2−δ,π/2](θ) (δ >0).

and

Iδ =
π/2∫
0

bδ(θ) cos3 θ sin θ dθ.

One sees that

Iδ ∼ δ4

2π
as δ∼0. (3.4)

Consequently, let us define the associated collision kernel

Bδ(q,n)=bδ(θ)|q ·n|

and denote by Qδ the collision operator obtained by replacing |q · n| by
δ−4Bδ(q,n) in (1.1).

Remark 3.1. Note that the introduction of the multiplicative factor
δ−4 can be seen as a suitable time-scaling in (1.1) (see Appendix 6 for fur-
ther details).

Our aim is to show that the (re-scaled) operator Qδ can be consid-
ered as a suitable Fokker–Planck collision operator. Precisely, let us fix f ∈
L1(R3) and a smooth test-function ψ(v). Using (2.5) with Qδ leads to

〈ψ, Qδ(f )〉= 1
2πδ4

∫
R3×R3×S2

Bδ(q,n)f (v)M1(w)
[
ψ(v�)−ψ(v)]dv dw dn.
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Now, inserting the expansion (3.2) in the above expression leads to the fol-
lowing second order approximation:

〈ψ, Qδ(f )〉 = J1
δ +J2

δ

= −2α(1−β)
2πδ4

×
∫

R3×R3×S2

Bδ(q,n)(q ·n)f (v)M1(w)∇vψ(v) ·n dv dw dn

+ (2α(1−β))2
4πδ4

×
∫

R3×R3×S2

Bδ(q,n) (q ·n)2 f (v)M1(w)D2ψ(v)

·n ⊗n dv dw dn. (3.5)

To estimate J1
δ , we first compute the integral with respect to dn. Accord-

ing to (3.3)

∫
S2

Bδ(q,n)(q ·n)ndn = 2π |q|
π/2∫
0

Bδ(q,n)(cos2 θ,0,0) sin θ dθ

= 2π |q|2
π/2∫
0

bδ(θ)(cos3 θ,0,0) sin θ dθ

= 2π |q|2(Iδ,0,0)=2πIδ|q|q.

Therefore

J1
δ =−Iδ 2α(1−β)

δ4

∫
R3×R3

|q|2f (v)M1(w)∇vψ(v, t) · q
|q| dv dw

One notes, because of (3.4), that the coefficient in front of the above inte-
gral goes to −α(1−β)/π as δ goes to 0. Consequently

J1
δ 
−α(1−β)

π

∫
R3×R3

|q|2f (v)M1(w)∇vψ(v, t) · q
|q| dv dw. (3.6)
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We proceed in the same way for J2
δ . One has first

∫
S2

Bδ(q,n) (q ·n)2 n ⊗n dn = |q|3
π/2∫
0

bδ(θ) cos3 θ sin θ dθ

2π∫
0

n⊗ndξ

= 2π |q|3
π/2∫
0

bδ(θ) cos3 θ sin θ

·Diag
[

cos2 θ,
1
2

sin2 θ,
1
2

sin2 θ

]
dθ, (3.7)

where Diag[a1, a2, a3] is the diagonal matrix in R3 × R3 whose diagonal
entries are ai (i=1,2,3). Now, defining

Kδ =
π/2∫
0

bδ(θ) cos5 θ sin θ dθ

one gets

∫
S2

Bδ(q,n) (q ·n)2 n ⊗n dn =2π |q|3Diag
[
Kδ,

1
2
(Iδ −Kδ), 1

2
(Iδ −Kδ)

]

and

J2
δ = (2α(1−β))2

2δ4

∫
R3×R3

|q|3f (v)M1(w)D2ψ(v, t)

·Diag
[
Kδ,

1
2
(Iδ −Kδ), 1

2
(Iδ −Kδ)

]
dv dw.

Now, since Kδ is negligible with respect to Iδ one gets the following
approximation

J2
δ 
 α2(1−β)2

2π

∫
R3×R3

|q|3f (v)M1(w)D2ψ(v) ·Diag[0,1,1] dv dw. (3.8)
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Let for any z ∈R3 (z �=0), S(z) be the symmetric matrix

S(z)= Id − z ⊗ z
|z|2 ,

i.e., S(z) is the projection on the space orthogonal to z. Then, combining
(3.5), (3.6) and (3.8), one obtains the following approximation for Qδ:

〈ψ, Qδ(f )〉 
 −α(1−β)
π

∫
R3×R3

|q|2f (v)M1(w)∇vψ(v) · q
|q| dv dw

+α
2(1−β)2

2π

∫
R3×R3

|q|3f (v)M1(w)D2ψ(v) ·S(v −w)dv dw.

Now, straightforward computations, using the fact that 2|q|q = Divv(|v −
w|3S(v −w)), yield

〈ψ, Qδ(f )〉 
 − 1
2π

∫
R3

dv ∇vψ(v) ·
∫
R3

|v −w|3S(v −w) {κM1(w)∇vf (v)

+(κ−µ)f (v)∇wM1(w)}dw

where we introduced the following parameters

κ=α2(1−β)2 and µ=α(1−β).

Since the above approximation is valid for arbitrary smooth function ψ ,
one sees that, as δ goes to 0, Qδ can be approximated by the following
Fokker–Planck operator (up to the constant 1/2π )

QFP(g)(v) = ∇v ·
∫
R3

|v −w|3S(v −w) · {κM1(w)∇vg(v)

+(κ−µ)g(v)∇wM1(w)}dw.

Let us write QFP in a nicer way: using the fact that S(v − w) ·
(v −w)=0 and that

∇wM1(w)=−m1(w −u1)

T1
M1(w),
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one has

QFP(g)(v) = κ∇v ·
∫
R3

|v −w|3M1(w)S(v −w)

·
{
∇vg(v)− m1(κ−µ)

κT1
(v −u1)g(v)

}
dw

= κ∇v ·
[
A(v) ·

{
∇vg(v)+ m1(µ−κ)

κT1
(v −u1)g(v)

}]
, (3.9)

where A(v) denotes the invertible matrix

A(v)=
∫
R3

|v −w|3M1(w)S(v −w)dw.

Remark 3.2. In a different spirit, Brey et al.(6) derived a linear Fok-
ker–Planck equation from (1.1) in the limit of small mass ratio (α→ 0).
We also point out that it is possible to consider (see e.g. ref. 26) the quasi-
elastic approximation of Q assuming that β�1. We adopt here the graz-
ing collisions asymptotics since it preserves the parameters α and β (and
therefore the inelasticity) modifying only the geometry of the collisions.
Note however that the existence of an equilibrium state for the linear
quasi-elastic approximation of Q is an open problem to our knowledge.

Now, one sees immediately that the above procedure preserves the
equilibrium state. Precisely, if F is an equilibrium state of Qδ, then
QFP(F )=0. This strongly suggest that one has to select the candidate for
being an equilibrium state of Q as the one of QFP. Of course, the interest
of the above procedure lies in the fact that this latter is easy to exhibit.
Indeed, it is obvious from (3.9) that the unique solution with unit mass
to QFP(g)=0 is given by a Maxwellian distribution with drift velocity u1
and temperature

T #

m
=
{
m1(µ−κ)
κT1

}−1

.

This suggests the following dichotomy:

• Either Q(f )=0 has no non-trivial solution.
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• Either the unique solution to Q(f )=0 with unit mass is the Max-
wellian:

M(v)=
( m

2πT #

)3/2
exp

{
−m(v −u1)

2

2T #

}
v ∈R3, (3.10)

where

T # = (1−α)(1−β)
1−α(1−β) T1. (3.11)

At this point, we remark that the above Maxwellian distribution is exactly
the equilibrium state found in ref. 25 in their study of the pseudo-Max-
wellian approximation of (1.1). This supports our belief that M is indeed
the steady state of Q and that, moreover, it is also a universal station-
ary solution (independent of the collision kernel) as it occurs in the elastic
case. This will be proved rigorously in the following section.

4. IS THE MAXWELLIAN THE EQUILIBRIUM STATE?

The problem of finding the equilibrium state of the linear Boltzmann
equation (1.1) has now been reduced to determine whether Q(M)≡ 0 or
not, where

M(v)=
( m

2πT #

)3/2
exp

{
−m(v −u1)

2

2T #

}
∀v ∈R3,

with T # = [(1−α)(1−β)/1−α(1−β)]T1. Surprisingly, apart for the pecu-
liar case of 1D-model, we have not been able to prove by direct computa-
tion that

Q(M)(v)=0 v ∈R3.

Actually, we prove this result through Fourier analysis, i.e., we show that

Q̂(M)(ξ)=0 for any ξ ∈R3,

where Q̂(M)(ξ) denotes the Fourier transform of Q(M). By (2.5), it is
given by

Q̂(M)(ξ)=
∫

R3×R3×S2

|q ·n|M(v)M1(w)[exp{−iξ · v�}− exp{−iξ · v}]dv dw dn.
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One sees immediately that, up to a translation of the referential frame, one
can assume that

u1 =0.

For the sake of simplicity, let us introduce the following parameter

C=
(
mm1

2T1 T
#

)3/2

and recall that µ=α(1−β). Then,

Q̂(M)(ξ)=
∫

R3×R3

|q|M(v)M1(w) exp{−iξ · v}dv dw

×
∫
S2

| q
|q| ·n| ( exp{2 i µ (q ·n) (ξ ·n)}−1 )dn.

Now, the key point of our computations is the identity

M(v)M1(w) = C exp
{
− m1

2µT1

[
µw2 + (1−µ)v2

]}
= C exp

{
− m1

2µT1

[
µ(1−µ)q2 + (v −µq)2

]}
,

where we used the fact that
m

T #
=−(µ−1)

m1

µT1
. Then,

Q̂(M)(ξ)= C

∫
R3×R3

|q| exp
{
− m1

2µT1

[
µ(1−µ)q2 + (v −µq)2

]}
exp{−iξ · v}dv dw

×
∫
S2

| q
|q| ·n| ( exp{2 i µ (q ·n) (ξ ·n)}−1 )dn.
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The change of variables (v,w)→ (v,q) yields

Q̂(M)(ξ)= C

∫
R3

|q| exp
{
− m1

2µT1
µ(1−µ)q2

}
dq

×
∫
R3

exp
{
− m1

2µT1
(v −µq)2

}
exp{−iξ · v}dv

×
∫
S2

| q
|q| ·n| ( exp {2 i µ (q ·n) (ξ ·n)}−1 )dn.

Performing first the second integral leads to

Q̂(M)(ξ) = C exp
{
−µT1

2m1
ξ2
}∫

R3

|q| exp
{
− m1

2T1
(1−µ)q2

}
exp{−iµq · ξ}dq

×
∫
S2

| q
|q| ·n| ( exp{2 i µ (q ·n) (ξ ·n)}−1 )dn

where we used the fact that the Fourier transform of the Gaussian
exp{−(v − u)2/2�} is equal to C� exp{−iu · ξ −�/2ξ2} for any �> 0 and
u∈R3 (here u=µq and �=m1/µT1) where C� is a multiplicative constant
depending only on �. Now, as pointed out first by Bobylev, (2) the inner
integral on the unit sphere is an isotropic function of the vectors ξ and q
and is therefore equal to∫

S2

|ξ ·n/|ξ || ( exp{2 i µ (q ·n) (ξ ·n)}−1 )dn.

Consequently,

Q̂(M)(ξ)= C exp
{
−µT1

2m1
ξ2
}∫

R3

|q| exp
{
− m1

2T1
(1−µ)q2

}
dq

×
∫
S2

|ξ ·n/|ξ || ( exp{−i µ (q · ξ+)}− exp{−iµq · ξ})dn,

where

ξ+ = ξ −2(ξ ·n)n.
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Now, since the last integral on the unit sphere only depends on |ξ | and
ξ ·q, this proves that

Q̂(M)(ξ)=0 for any ξ ∈R3,

because |ξ+|= |ξ |. We proved the existence result.

Theorem 4.1. The Maxwellian distribution

M(v)=
( m

2πT #

)3/2
exp

{
−m(v −u1)

2

2T #

}
v ∈R3,

with T # = [(1−α)(1−β)/1−α(1−β)]T1 is an equilibrium state for Q.
Remark 4.2. (Universality of the Maxwellian) One can easily

generalize the above computations to show that the Maxwellian (3.10) is
an equilibrium state of any collision operator QB enjoying the following
weak form

〈ψ,QB(f )〉= 1
2π

∫
R3×R3×S2

B(q,n)f (v)M1(w)[ψ(v�)−ψ(v)]dv dw dn

(4.1)

for any smooth function ψ. The collision kernel B(·, ·) is given by

B(q,n)=|q|γ b(q ·n/|q|) (4.2)

with −1�γ �1 and b(·) non-negative. This shows that, as it happens in
the elastic case, the equilibrium state of the dissipative (linear) Boltzmann
equation is universal in the sense that it does not depend on the collision
kernel.

Remark 4.3. Note that for a general collision kernel B(q,n) it is
convenient to use (4.1) as a definition for QB instead of its strong form:

QB(f )= 1
2π

∫
R3×S2

B(q,n) {J (q,n)f (v�)M1(w�)−f (v)M1(w)}dv dw dn,

where the factor J depends of B, α and β in a complicated way.
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5. ON THE TREND TO EQUILIBRIUM

In this section we investigated the large-time behavior of the solu-
tion to the linear dissipative Boltzmann Eq. (1.1). Precisely, let f0 be
a given (non-negative) distribution function and consider the following
Cauchy problem:


∂f

∂t
(v, t)=Q(f )(v, t) v ∈R3, t�0

f (v, t=0)=f0(v)
(5.1)

Since the above problem is linear (and homogeneous), it is not difficult
to construct a (non-negative) mild solution to (5.1) by a simple iterative
method. Moreover, this solution is unique and mass is preserved:

∫
R3

f (v, t)dv =
∫
R3

f0(v)dv for any t�0.

For further details, we refer the reader to ref. 22 where a more general
framework is taken into account (covering in particular inhomogeneous
equation with suitable boundary conditions).

A fundamental task in kinetic theory is to determine whether the so-
lution to (5.1) converges toward the equilibrium state of Q or not. Such
a result has been proved by Petterson(22) for collision kernels of the form
(4.2) with −1<γ <1 (corresponding to hard or soft interactions).

Actually, to get such a result one has first to prove that the equilibrium
state we exhibited is unique. This can be done thanks to the H -Theorem.

On the H-Theorem. Let us recall here the linear H -Theorem for
the dissipative Boltzmann Eq. (2.3) This result has been first established
by Pettersson,(22) assuming the existence of an equilibrium state for Q.
We point out that, in contrast to what happens in the non-linear set-
ting, the existence of such a steady-state is necessary to prove the linear
H -Theorem.

Now that this existence result is established, we are able to state
the corresponding H -Theorem and this shall enable us also to prove the
uniqueness of the stationary solution.

We give here an elementary formal proof of theH -Theorem (for details see
Pettersson(22) for a more general result for the linear inhomogeneous equation
with suitable boundary conditions). Let� :R+ →R be a convex C1-function.
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Define the associated entropy functional

H�(f |M)=
∫

R3
M(v)�

(
f (v)
M(v)

)
dv, (5.2)

whereM(v) is the Maxwellian (3.10). TheH -Theorem asserts thatH�(·|M) is
a Lyapounov functional for the linear Boltzmann equation.

Theorem 5.1. (H-Theorem) Let � : R+ → R be a convex
C1-function and let f0 be a distribution function with unit mass such that
H�(f0|M)<∞. Then,

d
dt
H�(f (t)|M)�0 (t�0)

where f (t) stands for the (unique) solution to (5.1).

Proof. It is clear that

d
dt
H�(f (t)|M) =

∫
R3

∂f

∂t
(v, t)�′

(
f (v, t)
M(v)

)
dv

=
∫
R3

Q(f )(v, t)�′
(
f (v, t)
M(v)

)
dv

and this amounts to show that

∫
R3

Q(f )(v)�′
(
f (v)
M(v)

)
dv�0 (5.3)

for any distribution function f with unit mass for which the above inte-
gral is meaningful. From (2.5)

∫
R3

Q(f )(v)�′
(
f (v)
M(v)

)
dv = 1

2π

∫
R3×R3×S2

|q ·n|f (v)M1(w)

×
{
�′
(
f (v�)
M(v�)

)
−�′

(
f (v)
M(v)

)}
dv dw dn
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and this last integral is also equal to

∫
R3×R3×S2

|q ·n|M(v)M1(w)
{[

f (v)
M(v)

− f (v�)
M(v�)

]
�′
(
f (v�)
M(v�)

)

+ f (v�)
M(v�)

�′
(
f (v�)
M(v�)

)
− f (v)
M(v)

�′
(
f (v)
M(v)

)}
dv dw dn.

Now, since
〈
f

M
�′
(
f

M

)
,Q(M)

〉
=0,

∫
R3

Q(f )(v)�′
(
f (v)
M(v)

)
dv = 1

2π

∫
R3×R3×S2

|q ·n|M(v)M1(w)

×
{
f (v)
M(v)

− f (v�)
M(v�)

}
×�′

(
f (v�)
M(v�)

)
dv dw dn. (5.4)

The conclusion follows since, � being convex,

�′(a)(b−a)��(b)−�(a) (a, b∈R)

and
〈
�

(
f

M

)
,Q(M)

〉
=0.

As a consequence of the H -Theorem, one has immediately the follow-
ing uniqueness result (due to Pettersson(22) in a more general setting).

Corollary 5.2. The Maxwellian distribution M given by (3.10) is the
unique stationary solution to (1.1) with unit mass.

Proof. Let F be another equilibrium state with unit mass. Then, ac-

cording to (5.4) with �(z)= (z−1)2

2
one sees that

∫
R3×R3×S2

|q ·n|M(v)M1(w)
{
F(v)
M(v)

− F(v�)
M(v�)

}
F(v�)
M(v�)

dv dw dn =0.
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This implies that

∫
R3×R3×S2

|q ·n|M(v)M1(w)
{
F(v)
M(v)

− F(v�)
M(v�)

}2

dv dw dn

=
∫

R3×R3×S2

|q ·n|F(v)M1(w)
{
F(v)
M(v)

− F(v�)
M(v�)

}
dv dw dn =0,

where this last integral is null since Q(F )=0. Consequently, one gets that

F(v)
M(v)

= F(v�)
M(v�)

for any (v,w)∈R3

and this last identity leads, as in the elastic case, to F =M.
The evolution of some second moment. Now, to prove that the

solution to the Cauchy problem (5.1) converges towards the (unique) equi-
librium state, one has to establish some suitable a priori estimates. Actual-
ly, in contrast to the elastic case and because of the lack of collision invar-
iants, it is not trivial to estimate the evolution of the moments of f (v, t).
This difficulty is peculiar to the hard-spheres model and does not occurs
for pseudo-Maxwellian molecules.(25) For long-range interactions forces,
Pettersson proves uniform estimates on the higher moments of f (v, t) (see
ref. 22, Theorem 4.1). Unfortunately, his arguments do not apply for the
hard-sphere model. Nevertheless, it is possible to show that some second
moment of the solution to (5.1) remains bounded. Precisely, let the initial
distribution function f0 ∈L1(R3) have unit mass and let f (t) be the solu-
tion to the Cauchy problem (5.1). Recall that for any t�0, f (v, t) has also
unit mass. One defines the following second moment of f (t):

T (t)= m

3

∫
R3

f (v, t)(v −u1)
2dv.

Note that T (t) is not stricto sensu the temperature of f (t) which is defined
by replacing the above velocity u1 by the drift velocity of f (t). Define also

F(t)=
∫

R3×R3

|v −w|2f (v, t)M1(w)dv dw.
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One has

F(t) =
∫
R3

(v −u1)
2f (v, t)

∫
R3

M1(w)dw +
∫
R3

f (v, t)dv
∫
R3

(w −u1)
2M1(w)dw

−2
∫
R3

(v−u1)f (v, t)dv ·
∫
R3

(w −u1)M1(w)dw

and this last integral equals to zero by definition of u1. Therefore

F(t)= 3
m
T (t)+ 3

m1
T1. (5.5)

Now, from (2.5), one has

dT (t)
dt

= m

6π

∫
R3×R3×S2

|q ·n|f (v, t)M1(w)
{
(v�−u1)

2 − (v −u1)
2
}

dv dw dn

and

(v�−u1)
2 − (v −u1)

2 = 4α2(1−β)2|q ·n|2 −4α(1−β)(q ·n)(v−u1) ·n

= −4α(1−β)[1−α(1−β)] |q ·n|2
+4α(1−β)(q ·n)(w −u1) ·n.

Consequently,

dT (t)
dt

= −2m
3π
µ(1−α(1−β))

∫
R3×R3×S2

|q ·n|3f (v, t)M1(w)dv dw dn

+2m
3π
µ

∫
R3×R3×S2

|q ·n|(q ·n)((w −u1) ·n)f (v, t)M1(w)dv dw dn

where we recall that 0<µ=α(1−β)<1. Since∫
S2

|q ·n|3dn =π |q|3 and
∫
S2

|q ·n|(q ·n)(w −u1) ·n dn =π |q|q · (w −u1)
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one gets

dT (t)
dt

� −2m
3
µ(1−µ)

∫
R3×S2

|q|3f (v, t)M1(w)dv dw

+2m
3
µ

∫
R3×S2

|q|2|w −u1|f (v, t)M1(w)dv dw.

Let us first investigate the second integral. One has as above∫
R3×S2

|q|2|w −u1|f (v, t)M1(w)dv dw =
∫
R3

(v −u1)
2f (v, t)

∫
R3

|w −u1|M1(w)dw

+
∫
R3

f (v, t)dv
∫
R3

|w −u1|3M1(w)dw,

where we used the fact that
∫
R3

(w −u1)|w −u1|M1(w)dw =0. Thus,

∫
R3×S2

|q|2|w −u1|f (v, t)M1(w)dv dw �C1F(t) (5.6)

with

C1 =max


∫
R3

|w −u1|M1(w)dw ,

∫
R3

|w −u1|3M1(w)dw∫
R3

|w −u|2M1(w)dw


is a positive (explicit) constant depending only M1. Moreover, Jensen’s in-
equality gives

∫
R3×S2

|q|3f (v, t)M1(w)dv dw�

 ∫
R3×S2

|q|2f (v, t)M1(w)dv dw


3/2

. (5.7)

Now, combining (5.6) and (5.7) and (5.5) one gets

dF(t)
dt

�−2µ(1−µ)F(t)3/2 +2µC1F(t).
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It is well–known then that

F(t)�max

{
C2

1

(1−µ)2 ,F (0)
}

t�0

and, turning back to T (t) one obtains that

sup
t�0

∫
R3

(v −u1)
2f (v, t)dv<∞ (5.8)

provided
∫

R3
v2f0(v)dv<∞. Note moreover that the above bound for T (t)

is explicitly computable in terms of f0, C1, α and β.

Now, mass conservation and the H -Theorem, together with estimate
(5.8), show that, if∫

R3

(
1+ v2 +| logf0(v)|

)
f0(v)dv<∞ (5.9)

then

sup
t�0

∫
R3

(
1+ (v −u1)

2 +| logf (v, t)|
)
f (v, t)dv<∞

and this implies the weak-compactness in L1(R3) of the family {f (v, t)}t�0.
Now, following ref. 22, one gets the weak-convergence towards the equilib-
rium of f (v, t). Then, using translation continuity one can prove the fol-
lowing strong convergence result (see ref. 21 for details).

Theorem 5.3. Let f0 ∈L1(R3) be a distribution function with unit
mass satisfying (5.9) and let f (v, t) be the solution to the Cauchy prob-
lem (5.1). Then

lim
t→∞‖f (t)−M‖L1(R3)=0.

Remark 5.4. We may conjecture that, as it occurs for the pseudo-
Maxwellian approximation,(25) the decay of ‖f (t)−M‖L1(R3) towards 0 is
exponential (with an explicit rate).
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6. CONCLUSIONS

We have proved existence and uniqueness of a collision equilibrium
for the dissipative linear Boltzmann equation with general collision kernel.
This equilibrium state is a universal Maxwellian with the same mass ve-
locity as the field particles background and with a (non-zero) temperature
always lower than the one of the background (depending on mass ra-
tio and inelasticity). This results, as early noticed in ref. 25, from the
combined effects of momentum and energy exchange with fields parti-
cles on the one side and, on the other side, of energy dissipation in the
collisions.

We point out that the existence of a Maxwellian equilibrium at
non-zero temperature is of primary importance for who wants to derive
the hydrodynamic equations for the considered granular flow. This can be
done paraphrasing the conclusions of ref. 25 thanks to a suitable Chap-
man–Enskog procedure.

Moreover, in space homogeneous conditions, the solution to the line-
ar dissipative Boltzmann equation converges towards the equilibrium state
as time goes to infinity for any initial datum with finite entropy and
temperature. Unfortunately, our convergence result is based upon com-
pactness arguments and therefore, we have not been able to determine
the decay rate towards the equilibrium. We may hope that, as it occurs
for the pseudo-Maxwellian approximation,(25) the relaxation to equilib-
rium is exponential. Moreover, the results of the above Appendix show
that the Fokker–Planck equation (6.9) is a good approximation of (1.1)
when collisions become grazing. Now, it is well–known (see ref. 1) that
the solution to (6.9) relaxes to M exponentially with an explicit rate re-
lated to T #. This supports us in the belief that the same occurs for the
dissipative Boltzmann Eq. (1.1). We may infer that dissipation–dissipation
entropy methods should lead to such a result. Work is in progress in this
direction.

APPENDIX

Let us make rigorous the derivation of the Fokker–Planck equation
we formally obtained in Section 3. This can be done a posteriori using the
results of Section 5. Our notations are those of Section 3. The only diffe-
rence is that, hereafter Qδ denotes the collision operator with kernel:

Bδ(q,n)=bδ(θ)|q ·n|

whereas in Section 3 we consider a re-scaled kernel (see Remark 3.1).
Actually, in Section 3 we were concerned with an approximation of the
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Boltzmann collision operator whereas in this appendix, we approximate the
solution to the Boltzmann equation as collisions become grazing. This will
appear clearly in the sequel. Let f0 be a non-negative distribution func-
tion. For the sake of simplicity, we assume in this section that f0 is regular
(in a sense we will make more precise further) and consider the following
Cauchy problem:

∂fδ

∂t
(v, t)=Qδ(fδ)(v, t) t >0, v ∈R3

fδ(v,0)=f0(v)
(6.1)

As we told it in the Section 5, such a problem (6.1) admits a (unique)
weak-solution which satisfies

−
∞∫

0

dt
∫
R3

fδ(v, t)∂tψ(v, t)dv −
∫
R3

f0(v)ψ(v,0)dv

= 1
2π

∞∫
0

dt
∫

R3×R3×S2

Bδ(q,n)fδ(v, t)M1(w)

· [ψ(v�, t)−ψ(v, t)]dv dw dn. (6.2)

for any ψ ∈C1
2,c([0, +∞[×R3), i.e., ψ is continuously differentiable with

compact support in [0, +∞[ and twice continuously differentiable in R3.

Recall that

Iδ =
π/2∫
0

bδ(θ) cos3 θ sin θ dθ ∼ δ4

2π
as δ∼0. (6.3)

We introduce the following time-scaling

gδ(v, t)=fδ(v, δ−4 t).

Then, considering a test-function of the form ψδ(v, t) = ψ(v, δ−4 t) into
(6.2) leads to

−
∞∫

0

dt
∫
R3

gδ(v, t)∂tψ(v, t)dv −
∫
R3

f0(v)ψ(v,0)dv
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= 1
2πδ4

∞∫
0

dt
∫

R3×R3×S2

Bδ(q,n)gδ(v, t)M1(w)

· [ψ(v�, t)−ψ(v, t)]dv dw dn. (6.4)

The key point of the approximation procedure is the following

Proposition 6.1. There exists a non-negative function g : [0, +∞[→
L1(R3) and a subsequence, still denoted (gδ)δ�0 such that gδ converges
weakly in L1

loc([0, +∞[,L1(R3)) towards g as δ goes to zero.

We leave the proof to Proposition 6.1 to the end of this appendix and
explain now how to derive the Fokker-Plank equation from it. Inserting
the expansion (3.2) into (6.4) leads to the following approximation:

−
∞∫

0

dt
∫
R3

gδ(v, t)∂tψ(v, t)dv −
∫
R3

f0(v)ψ(v,0)dv

=
∞∫

0

J1
δ (t)dt+

∞∫
0

J2
δ (t)dt+Rδ

=−2α(1−β)
2πδ4

∞∫
0

dt
∫

R3×R3×S2

Bδ(q,n)(q ·n)gδ(v, t)M1(w)∇vψ(v, t)

·n dv dw dn

+ (2α(1−β))2
4πδ4

∞∫
0

dt
∫

R3×R3×S2

Bδ(q,n) (q ·n)2 gδ(v, t)

M1(w)D2ψ(v, t) ·n ⊗n dv dw dn +Rδ,

where Rδ = Rδ(ψ) is a suitable remainder term obtained from the Taylor
expansion of ψ (3.2) (see ref. 18 for details). One can prove as in the elas-
tic case (18) that

lim
δ→0

Rδ(ψ)=0 (6.5)

for any test-function ψ ∈C1
2,c([0, +∞[×R3). As in Section 3 one can show

that
∞∫

0

J1
δ (t)dt=−Iδ 2α(1−β)

δ4

∞∫
0

dt
∫

R3×R3

|q|2gδ(v, t)M1(w)∇vψ(v, t) · q
|q| dv dw



Dissipative Linear Boltzmann Equation for Hard Spheres 661

Consequently, thanks to Proposition 6.1

lim
δ→0

J1
δ (t)dt = −α(1−β)

π

∞∫
0

dt

∫
R3×R3

|q|2g(v, t)M1(w)∇vψ(v, t) · q
|q| dv dw. (6.6)

We proceed in the same way for J2
δ and one sees that

lim
δ→0

∞∫
0

J2
δ (t)dt = α2(1−β)2

2π

∞∫
0

dt
∫

R3×R3

|q|3g(v, t)M1(w)D2ψ(v, t)

· Diag[0,1,1] dv dw. (6.7)

Then, combining (6.4), (6.6) and (6.7), one sees that the weak limit g sat-
isfies

−
∞∫

0

dt
∫
R3

g(v, t)∂tψ(v, t)dv −
∫
R3

f0(v)ψ(v,0)dv

=− 1
2π

∞∫
0

dt
∫
R3

dv∇vψ(v, t) ·
∫
R3

|v −w|3S(v −w){κM1(w)∇vg(v, t)

+ (κ+µ)g(v, t)∇wM1(w)}dw, (6.8)

where κ and µ are defined in Section 3. It is not difficult now to recognize
in 6.8 the weak formulation of the following Cauchy problem

∂g

∂t
(v, t)= 1

2π
QFP(g)(v, t) t�0, v ∈R3

g(v,0)=f0(v)
(6.9)

where the Fokker–Planck collision operator is given by (3.9). It is well-
known that problem (6.9) admits a (unique) non-negative weak solution
g. We proved the following approximation result.

Theorem 6.2. There exists a subsequence, still denoted gδ, such that

gδ ⇀
δ→0

g weakly in L1
loc([0,+∞[, L1(R3))

where g is a weak solution to the Fokker–Planck equation (3.9) with reg-
ular initial data f0.



662 Lods and Toscani

It remains now to prove Proposition 6.1. Clearly, it is enough to prove
the following uniform estimate

sup
δ�0,t�0

∫
R3

(1+ (v −u1)
2 +| log gδ(v, t)|)gδ(v, t)dv<∞. (6.10)

Now the estimate

sup
δ�0,t�0

∫
R3

(1+| log gδ(v, t)|)gδ(v, t)dv<∞,

follows form the H -Theorem applied to fδ(t). Note that the H -Theorem
turns to be valid for the collision kernel Bδ(·) since the equilibrium state is
universal (see Remark 4.2). Now to prove the remaining estimate, we pro-
ceed as we did in Section 5 to derive formula (5.8). We only sketch here
the main changes. Let

Tδ(t)= m

3

∫
R3

gδ(v, t)(v −u1)
2dv = m

3

∫
R3

fδ(v, δ−4t)(v −u1)
2dv.

Then,

dTδ(t)
dt

= mδ4

6π

∫
R3×R3×S2

Bδ(q ·n)fδ(v, δ−4t)M1(w)

{
(v�−u1)

2 − (v −u1)
2
}

dv dw dn.

Now, the only supplementary difficulty lies in the computation of∫
S2

|q ·n|2Bδ(vq ·n)dn =2πIδ|q|3 and

∫
S2

Bδ(q ·n)(q ·n)(w −u1) ·n dn�2πIδ|q|2|w −u1|

and the conclusion follows as in Section 5 since limδ→0 2πδ4Iδ =1.

Remark 6.3. The derivation of the Fokker–Planck equation (6.9)
calls for comments. As already mentioned, it has been made possible be-
cause of the nature of inelastic collision mechanism. Indeed, since the loss
of the relative velocity due to inelasticity only occurs for the normal com-
ponent while the tangential component of the relative velocity remains un-
changed. Then, in the grazing collision limit the local energy is conserved
since the difference between pre- and post-collisional energies are propor-
tional to a function of the scattering angle, which vanishes as the collision
is grazing (independently of β).
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